DONISTHORPE'S EARLEST CLOCKS

part 1 of 3 A skeletonised posted-frame 30-hour

When I was offered a 30-hour dial and movement by the Leicestershire clockmaker Joseph Donisthorpe of Normanton-leHeath by an American collector, it was not appreciated until it arrived how unusual and interesting it was. Not only was the posted-frame movement different to most of this type, but it was dated, and preparations had been made to fit an alarm but this had been abandoned. This will be called Clock 2, for despite it being the first to be found, it is discussed in the second part of this article.

Then, like buses, within a short time another one turned up, almost identical, although not dated, but in its original case. This will be called Clock 1 and will be discussed first.

Joseph Donisthorpe is mainly known as the master of the noted Samuel Deacon of Barton-in-the-Beans, who has featured extensively in Clocks magazine and elsewhere. Deacon was scathing about the training, or his perceived lack of it, that he claimed to have received from Donisthorpe, but Deacon was a person who was easily offended and could be quite vindictive to anyone who crossed his path. It seems to me that he was what we nowadays called a 'control freak' and a detailed study of both his written records and his clocks by an expert psychologist would be most revealing. Details of Joseph Donisthorpe's interesting life will be considered in Part 3 of this article, as well as his next dated clocks.

The case and dial of Clock 1 are good

© John Robey, UK john@mayfieldbooks.co.uk

examples of a country-made singlehanded 30 -hour clock from the middle of the eighteenth century. The oak case, figure 1 , is typical of many made in the Midlands and Northern counties, with free-standing hood pillars, a shaped top to the trunk door and a caddy top to the hood, figure 2. In comparison, a southern 30-hour clock would have pillars attached to the hood door, a flat-topped trunk door and be a little slimmer. This case only stands 6 ft 5 in tall and has probably lost a few inches off its plinth. As a result the weight drop is such that it barely runs for a full day, and even at its full height it
 the base of each hood pillar.
 Figure 4. The block sits round the end of the pillar.
 ony packing pieces
would not have kept going if daily winding was delayed for any reason. This is also a characteristic of Deacon's clocks and is discussed later.
A feature of the hood that I have never to the pillars, figures 3 and 4 At the top there are the usual cast brass capitals, but at the bottom the pillars sit on wooden blocks. Or more accurately the wooden blocks sit round the reduced ends of the pillars. Was this done to save on the cost of a couple of brass castings? It must have been a deliberate feature, as the pillars have been turned down so that the blocks slip on. As the pillars are firmly
fixed and cannot be readily removed they are not a later modification, but as originally made.
The base of the case, figure 5 , is also of an unusual construction. Normally there are filler pieces to space the front and the sides of the base panels away from
the trunk, the resultant gap being hidden with a relatively wide moulding. Here the base panels are nailed and glued directly on to the trunk and since the grain runs horizontally, a simple moulding has been cut along the top edge. The result is a effect of a slightly top-heavy case. At the very bottom is a low plinth, which may have been reduced in height.
The seatboard, figure 6, shows no sign of ever having been interfered with and Confirms the originality of the case with the dial and movement. In any event it was said to have come from a Leicestershire cottage, where it had probably been fo
many generations. It is the work of a country joiner who has not had a grea deal of experience of making clock cases. The $101 / 2$ in square dial has a plain matted centre, no calendar, 'floating half-hour markers, and since it has an (original) single hand, there are no minute

Figure 7. The single-handed dial with Four

divisions round the outside edge of the chapter ring, figure 7 . The dial plate is solid, without the cast gaps behind the chapter ring that would be expected for a
dial from this region. The spandrel for dial from this region. The spandrels are of
the female Four Seasons pattern, which were often used on mid-century, provincia clocks. The
is engrackmaker's full name and location above above he dial centre. While the chapter the engravave been a bought-in item, done by Joseph Donistherpe hrobably done by Joseph Donisthorpe himself, for, as we will see in Part Two, he was capable of doing at least some engraving
work, competent, but not of the quality work, competent, but not of the quality
that a specialist engraver could produce Donisthorpe usually displayed his name on an oval or round plaque in the centre of the dial of his clocks.
So far we have a pleasant country clock with many typical features and
some that are not so typical. It is when we look at the movement that things get more interesting. All Donisthorpe's other known 30-hour clocks have plated frame movements, as normally found have 2 are posted-frame movements. This type of construction was primarily used in southern England an East Anglia (where posted-frame movements were still being made in the nineteenth century, long after they had fallen out of used elsewhere). They are rarely, with only with a few exceptions, found as far north as eicestershire.
These two Donisthorpe movements display several features that, while But their combination makes both clock and any other similar Donisthorpe movements that have survived and not been reported) quite different to other English posted-frame 30-hour clocks

Most noticeable is that the frame ha seletonised top and bottom plates, figure 8, a construction known on just a few English clocks. Example I have noted in CLocks magazine (atthough a made) include two by Benjamin Prew of Draycott, Gloucestershire (December 2001, pages $16-18$ and April 2002, page 9), one by Richard Gilkes of Adderbury, Oxfordshire (December 2001, page 49), although not typical of his work, and an unsigned clock (September 2002, pages 36-7). While rare on English clocks this type of clock frame is often found French and Ialian lantern clocks, but ido not northwest Leicestershire that Donisthorpe might have seen. This type of fra
to save brass, bume may have been used to save brass, but it has a couple added to be cut in the solid plates holes have to be cut in the bottom one for the winding
rope or chain, with rectangular apertures in the top plate for the escapement, hammer shaft and fly. With this clock Joseph Donisthorpe would have just picked up two identical castings and filed smooth rectargur holes in each There was no need for him to mark the positions of the rope holes, nor those in the top plate For clocks driven by a rope, as this one is-both Donisthorpe and Deacon always used rope, not chain, on their 30-hour clocks-a major disadvantage of the usual English construct is that the frame cannot be put in a cleaning solution without remove he here. This means it (provided, of course, that it is still serviceable) With an that it stil the front and rear movement bars are removed the great wheels can be taken out and the rope just drops out through the long slots. Replacement is

Figure 8. Movement from the front showing the skeletonised frame.
just the reverse procedure, making sure hat the weight pulley and counterweigh are on the correct sides and the rope is ostioned over the spiked pulleys. In these pictures of the movement there is no rope shown as it needed replacing and so was added later
English 30-hour posted-frame clocks, including lantern clocks, usually have with the arbors for the strikework and the hammer pivoted in the ends of the cross arms. This is a specifically English system, only used on the Continent on some late Dutch and French lantern clocks based on English practice. The normal Europea method is to pivot these arbors in the corner pillars. On most French postedin the frock pillar, while at the rear a pivot is screwed through the pillar into a hole in the end of the arbor itself. A very sma number of English clockmakers used this method, the most notable being John Belling of Bodmin, Cornwall.
The Germanic system is to locate
he pivots at both ends of the arbors in holes in the square-section pillars. These movements usually have iron pillars he top plate with nuts, not riveted as is he English 30 -hour practice. To avoid having to put the strikework arbors in place during the assembly of the frame is commonly found that the tops of two diagonally opposite pillars sit in slots

igure 9. Front view with the hour wheel removed to show the starwheel to let of he strike. Note the strikework pivoted in two'humps' on the right-hand front pilla.
rather than holes in the top plate. Hence by slackening off the appropriate nuts these piliars can be separated sufficiently the trains strikework to be inserted after the trains are in place.
Donisthorpe has pivoted his strikework in a manner that is different to anything seen on the Continental clocks I have known on English clocks. At the front the pivots sit in holes in the rectangularsection brass pillars, while at the rear there are separate removable brass pivot blocks, each held to the pillar with a screw, figure 10. There is no need for steady pins as these blocks have a small return that sits against the outer edge of the rear pillars. The left-hand front pillar offset caused by the block. On the right the pillars are in line, but the front pivots sit in two 'humps' on the pillar, figure 9. The significance of this when considering the chronological sequence of these two movements is considered in Part 2. These removable pivot blocks make Donisthorpe's posted-frame movements some of the easiest of any type to assemble.
Like most posted-frame clocks, incluaing lantern clocks, the hammer
strikes the inside of the bell There is conventional hammer spring fixed to the bottom plate, but no separate counter or stop. Instead the hammer shaft contacts the left-hand edge of the rear aperture
in the top plate. This is not ideal, as the hammer needs to strike the bell and then rebound slightly to avoid jangling. Preferably the stop should make contact with the hammer shaft quite close to the pivot and posted-frame clocks usually have an L-shaped stop fixed to the top plate. Here thirds up from the pivot which make adjustment more critical adjustment more critica
One feature that is qu 30 -hour clocks, is otherwise unkl on most on any other Donisthorpe (and Deacon) clocks-the slotted countwheel and two separate arbors for the lifting/warning and locking/countwheel detents. Joseph Donisthorpe was an early advocate of the pin countwheel, which uses just on His apprentice Samuel Deacon, followed his master and Deacon's successors continued to use it to the end of the firm. Locking is by means of a pin on the second wheel, rather than the hoop wheel used on Clock 2. As a result the countwheel slots are curved to help lift the detent out of the slot at the start of the striking sequence
The wheelwork is quite standard for 30 -hour clocks, apart from the drive to the
hour wheel. The teeth on all the wheels hour wheel. The teeth on all the wheels shown in a panel on this page. That for the going train gives 60 beats per minute, or a one-second pendulum.
Since the eight-leaf pinion of report

Figure 10. Rear view showing the slotted countwheel and the two removable pivot blocks for the strikework and hammer
drives the 48 -tooth hour wheel, six turns of the greatwheel give one revolution of the hour hand and the great wheel turns once in two hours. For a given pulley diameter and weight drop, it is only this ratio (as well as a similar consideration or the striking train) which determines how long the clock will run before it needs est of the wheel train is geared so that

WHEEL COUNTS
Going train
Sscapewheel Great wheel Great wheel
Hour wheel
Strike train
Warning wheel
Locking wheel Locking wheel
Great wheel (13 hammer pins) Great wheel (13 hammer pins)
Countwheel
from fully
The result was wound to when it stopped. hours less than expected of a one-day clock and there is not much leeway if it is not wound promptly every day.
The striking train is shown in figure
12. The fly is a later replacement of the type used on plated movements. The corner pillars and the lack of cross arms

Figure 12
 The striking train

through the top plate into the thickness of the bar. This is a neat method, but has pracical disadvantages. If the pins are left short with not much to grip they can be awkward to remove as there is no means of knocking them out from below, as can be done with a wedge.
The front bar shows that Joseph Dhat all who work at the bosch experience that all who work at the bench dread-a
drill breaking off in a blind hole. The front driil breaking off in a blind hole. The front
bar, with a narrow vertical extension for the front pivot of the pallet arbor, was intended to be held in the same way, but when the drill broke, figure 15, a change of plan was necessary. Removing a broken drill can be very difficult if damage to the component is to be avoided. One method is to soak the part in a hot solution without damaging the brass, but it is a very slow process and can take a coup of days to loosen the drill (also useful for broken screw).
Presumably Donisthorpe either did not know of this useful method, or more likely, he was not prepared to wait and sought an alternative way out of his dilemm He filled in the holes in the top plate, are invisible to the naked eye, but not the underneath surface where they can be seen quite clearly, figure 16. He then filed V-slots to take a triangular brass wedge. Like the rest of this movement, the wedge is carefully made (it appears to be
hour wheel turns exactly once in 12 hours The smaller the ratio the better-mos ven 3:1, but Donisthorpe (and later Deacon) used 6:1, resulting in the short duration that was mentioned earlier. This is compensated to some extent by having
a smaller effective pulley diameter-and consequently needs a slightly heavier weight. These two clocks have an effective pulley diameter of about 1^{1} Bin compared to the usual $11 / 2 \mathrm{in}$. A friend with a Samuel Deacon clock in its original case of normal height kindly noted how long it
on the movement bars means that there no need to have a removable lifting piece much easier to make than fitting them onto squared extensions to the arbors. The hammer spring is decoratively filed on the visible side, figure 14, and this is Clock 2 is considered
This movement, like Clock 2, is very well finished with the edges of the frame and other parts neatly filed. The centre and rear movement bars are each held with two taper pins into holes drilled

